Graphing Linear Inequalities

1) Do Now
2) Notes on Graphical Solutions to Inequalities in 2 variables
3) Revisit Do Now
4) Example of graphical solution to systems of inequalities in 2 variables
5) JIG Saw
-Complete \#1-8: 10 min
-JigSaw: Discuss your problem (3 min)
-Present your problem
HW: p. 138 Oral Exercises \#1, 13-16
Written Exercises \#5, 13, 21,27, 35**(challenge)

Do Now

Write the relationship represented by each graph.

Graphing Linear Inequalities

Key Facts:
Shaded area $=$ the solution (all points that make the equation true!)

Dotted line: < or >

Solid line: \leq or \geq

Steps:

1) Graph the line as if it were an equal sign. -Use a dotted or solid line (see above).
2) Test $(0,0)$ (or another point NOT on the line)
-If it makes the inequality true, shade the region that includes the point.
-If it makes the inequality false, shade the region that excludes the point.

Now, let's do an example that combines our knowledge of systems with inequalities

$$
2 x-6 y \geq-12 \quad y<-3 x+3
$$

Our solution is where the shaded regions intersect!

JIG Saw (with KUTA worksheet)

1) $y \leq-x-2$

$$
y \geq-5 x+2
$$

3) $y \leq \frac{1}{2} x+2$

$$
y<-2 x-3
$$

2) $y>-x-2$

$$
y<-5 x+2
$$

4) $x \leq-3$

$$
y<\frac{5}{3} x+2
$$

5) $y \leq-\frac{5}{2} x-2$
6) $y \geq \frac{2}{3} x+3$
$y<-\frac{1}{2} x+2$

7) $4 x+y<2$
$y>-2$

8) $3 x+2 y \geq-2$
$x+2 y \leq 2$

HW: p. 138 Oral Exercises \#1, 13-16
Written Exercises \#5, 13, 21, 27, 35**(challenge)

