Rules of Exponents Quadratics \#1, 2, 3, 4a,5d, Seq Series \#3,5,7, 8,

Seq\{Serves
a)

$$
\text { a) } \text { find }_{13}=5(2)^{(13-1)}=20,480
$$

$$
t_{n}=t_{1}(r)^{(n-1)}
$$

b)

$$
\begin{aligned}
& S_{10}=\frac{5-5(2)^{10}}{1-2}=5,115 \\
& S_{n}=\frac{t_{1}-t_{1}(r)^{n}}{1-r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } 5 \text {, } 5,10,20,40 \ldots\} \begin{array}{l}
r=2 \\
\text { find } \\
\text { gememente }
\end{array} \\
& \text { find }
\end{aligned}
$$

Seq: Serves

* 8 Find the sum of the

$$
\begin{aligned}
& \text { arithmetic series. } \\
& 20+17 \overbrace{}^{-3} 4+11+\ldots+-64 \\
& S_{n}=\frac{\left(t_{1}+t_{n}\right) n}{2}=\frac{(20+-64) n}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { the andthmetic }
\end{aligned}
$$

$$
\begin{aligned}
& \text { terms) lasterm! n formula to help } \\
& t_{n}^{2}=t_{1}+d(n-1) \\
& -64=20+-3(n-1) \\
& \frac{-20-20}{-34}=\frac{-3(n-1)}{-3} \\
& 28=n-1 \\
& +1 \\
& 29=n
\end{aligned}
$$

518 Midyear Review

$$
\begin{aligned}
& \text { Seq́s series } \\
& \text { (7) } \sum_{k=1}^{30} 3 k-5 \\
& \left.t_{1}=3(1)-5=-2\right) \text { do mistu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { avitmmetic! } \\
& \text { So... } \\
& \begin{array}{l}
S_{n}=\frac{\left(t_{1}+t_{n}\right) n}{2} 3(30)-5 \\
S_{30}=\frac{\left(-2+t_{30}^{2}\right)(30)}{2}=85
\end{array} \\
& S_{30}=\frac{(-2+85) 30}{2} \\
& S_{30}=1245
\end{aligned}
$$

Quad
\#1) Solve by factoring.

$$
\begin{aligned}
& x^{2}-3 x-40=0 \quad 40 \\
& (x+5)(x-8)=0 \begin{array}{cc}
1 & 110 \\
2 & 30 \\
4 & 10
\end{array}
\end{aligned}
$$

So... $x+5=0$

$$
\frac{-5-5}{x=-5}
$$

or

$$
\begin{aligned}
& \begin{array}{l}
x-8=0 \\
+8 \\
+8
\end{array} \\
& \hline x=8
\end{aligned}
$$

Quad)
(3) Solve by completing tie Square.

$$
\begin{aligned}
& x^{2}+10 x=15 \\
& \left(\frac{10}{2}\right)^{2} x^{2}+10 x-15=0 \\
& +40 \text { +40en } \\
& =(5)^{2} x^{2}+10 x+25=-40 \\
& \left(=25 \sqrt{(x+5)^{2}}=\sqrt{40}\right. \\
& x+5= \pm 6 \text { ? } \begin{array}{c}
\text { ans }{ }^{2} w^{2} \text { id } \\
\text { red }
\end{array} \\
& x=6 . ?-5-1.321 \\
& x=-6 . ?-5=-11.32
\end{aligned}
$$

Quad)
\#4) find the roots $y=x^{2}-6 x+5$

$$
\begin{aligned}
& \left.0=x^{2}-6 x+5\right) \text { yon }_{0}^{0} \text { cold } 100^{\circ} \\
& x=\frac{-b \pm \sqrt{b^{2}-4(a)(c)}}{2(a)}\left\{\begin{array}{l}
=\begin{array}{l}
x(x-5)(x-1) \\
0=(x) \\
x=50 r y
\end{array}
\end{array}\right. \\
& x=\frac{-(-6) \pm \sqrt{6^{2}-4(1)(5)}}{2(1)} \\
& =\frac{6 \pm \sqrt{36-20}}{2} \\
& =\frac{6 \pm \sqrt{16}}{2} \\
& =\frac{6 \pm 4}{2} \div \frac{10}{2}=1+\frac{2}{2}=1=x
\end{aligned}
$$

Orin when d (intreory) will the firework hit the ground?

$$
\begin{aligned}
& h=-16 t^{2}+184 t \\
& t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-184 \pm \sqrt{184^{2}-4(-16)(6)}}{2(-16)} \\
& =\frac{-184 \pm \sqrt{184^{2}}}{-32} \\
& =\frac{-184 \pm 184}{-32} \backslash \frac{-184+184}{-32}=\frac{0}{-32} 00 \\
& \text { So... The firework } \\
& \begin{array}{l}
\text { hits true ground after } \\
11.5 \text { seconds }
\end{array}
\end{aligned}
$$

