Objective: Find the terms of a sequence given an explicit or recursive formula Recap:

Sequence - list of ordered terms

Series - the sum of a sequence

Explicit Formula - gives you the nth term

Recursive Formula- one or more previous terms are used to generate the next term

Practice with Formulas

1) Write the first 6 terms of the sequence defined by the explicit formula: $t_n = -2n + 3$

2) Write the first 6 terms of the sequence defined by the recursive formula: $t_1 = 4$ and $t_n = 3t_{n-1} + 5$

$$t_n = 3t_{n-1} + 5$$

$$t_1 = 4$$

$$t_2 = 3t_1 + 5 =$$

Kuta Software - Infinite Algebra 2

Name____

Introduction to Sequences

Date_____ Period_

Find the next three terms in each sequence.

1) 1, -3, 9, -27, 81, ...

2) 9, 109, 209, 309, 409, ...

3) 0, 3, 8, 15, 24, ...

4) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{1}{4}$, $\frac{5}{32}$, ...

5) 4, 16, 36, 64, 100, ...

6) 14, 34, 54, 74, 94, ...

7) 5, $\frac{5}{2}$, $\frac{5}{4}$, $\frac{5}{8}$, $\frac{5}{16}$, ...

8) -9, 101, -999, 10001, -99999, ...

Find the tenth term in each sequence.

21)
$$a_n = \frac{2n+1}{n^3}$$

22)
$$a_n = 4^{n-1}$$

23)
$$a_n = (2n)^2$$

24)
$$a_n = (2n-1)^2$$

Find the first four terms in each sequence.

25)
$$a_n = a_{n-1} + 10$$

 $a_1 = 29$

26)
$$a_n = a_{n-1} \cdot 2$$

 $a_1 = -1$

27)
$$a_n = a_{n-1} + n$$

 $a_1 = -4$

28)
$$a_n = \frac{2 + a_{n-1}}{2}$$

 $a_1 = 10$