Objective: Find the terms of a sequence given an explicit or recursive formula
Recap:

Sequence - list of ordered terms
Series - the sum of a sequence
Explicit Formula - gives you the $\mathrm{n}^{\text {th }}$ term
Recursive Formula- one or more previous terms are used to generate the next term

Practice with Formulas

1) Write the first 6 terms of the sequence defined by the explicit formula: $\mathrm{t}_{\mathrm{n}}=-2 \mathrm{n}+3$

2) Write the first 6 terms of the sequence defined by the recursive formula: $t_{1}=4$ and $t_{n}=3 t_{n-1}+5$

$$
\begin{array}{ll}
\mathrm{t}_{\mathrm{n}}=3 \mathrm{t}_{\mathrm{n}-1}+5 & \mathrm{t}_{1}=4 \\
\mathrm{t}_{2}=3 \mathrm{t}_{1}+5= &
\end{array}
$$

Kuta Software - Infinite Algebra 2
Introduction to Sequences

Name \qquad
Date \qquad Period_都

1) $1,-3,9,-27,81, \ldots$
2) $0,3,8,15,24, \ldots$
3) $\frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{1}{4}, \frac{5}{32}, \ldots$
4) $4,16,36,64,100, \ldots$
5) $5, \frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \frac{5}{16}, \ldots$
6) $-9,101,-999,10001,-99999, \ldots$

Find the tenth term in each sequence.

21) $a_{n}=\frac{2 n+1}{n^{3}}$
22) $a_{n}=4^{n-1}$
23) $a_{n}=(2 n)^{2}$
24) $a_{n}=(2 n-1)^{2}$

Find the first four terms in each sequence.
25) $a_{n}=a_{n-1}+10$
$a_{1}=29$
26) $a_{n}=a_{n-1} \cdot 2$
$a_{1}=-1$
27) $a_{n}=a_{n-1}+n$ $a_{1}=-4$
28) $a_{n}=\frac{2+a_{n-1}}{2}$ $a_{1}=10$

