Sequences and Series (Sections 11.1 – 11.5 in <u>Algebra 2</u>)

By the end of this Unit you should be able to:

General

- Find the terms of a sequence given an explicit or recursive formula
- Evaluate the sum of a series expressed in sigma notation

Arithmetic

- Recognize arithmetic sequences
- Find the indicated term, common difference, 1st term, or term number of an arithmetic sequence
- Write and use explicit and recursive formulas for arithmetic sequences
- Find arithmetic means between two numbers
- Find the sum of the first *n* terms of an arithmetic series
- Use the formula to evaluate an arithmetic series

Geometric

- Recognize geometric sequences
 - Introductionto Simplifying Exponents
 - 1. Use properties of exponents to simplify expressions * make sure to include how to simplify: and
 - 2. Evaluate and simplify expressions with negative exponents
 - 3. Evaluate expressions with fractional exponents
 - 4. Rewrite expressions with fractional exponents using radicals and vice versa

• Find the indicated term, common ratio, and first term of a geometric sequence

of a geometric sequence

- Find geometric means between two numbers
- Find the sum of the first *n* terms of a geometric series
- Use the formula for a geometric series

Sequences and Series

- model real world

Sequence -

Ex. 1, 3, 5, 7, 9 ...

The three dots following a sequence is called an **ellipsis**. This indicates that the sequence is ______, meaning it continues without an _____.

If there is a final term in the sequence, it has **an end**, meaning the sequence is

Terms (t) can be listed with subscripts. (Make note some texts use "a" or "u" to represent terms):

Explicit Formula -

ex. $t_n = 2n$ Find the 10th term:

Recursive Formula-

ex.
$$t_n = t_{n-1} - 2$$

and $t_1 = 1$
Find the first 3 terms:

Ase	eries is an e	xpres	sion	that in	dicate	s the	of a sequence.
Ex.	Sequence:	2,	4,	6,	8,	10	(rule?)
	Series:						
Summation notation uses sigma a series. Ex. 2 + 4 + 6 + 8 + 10						as a shortcut to expressing	
	Sumr	nation	Nota	tion:		\sum	

(which is read as _____)

Ex. Write the terms of the series. Then evaluate:

HW: pg. 944 lesson 1.6 #1-30 odd