## Ch 1.5 - Division of Angles and Segments

## Objectives:

Identify midpoints and bisectors of segments Identify trisection points and trisectors of segments Identify angle bisectors
Identify angle trisectors

## Agenda:

1) DO NOW: Division of Segments and Angles

Hand back Quiz \& HW Answer Packet
2) Check HW - Questions
3) 3 Clarifying Examples
4) Practice Problems

HW: p. 32 \#1, 2b, 3b, 5, 6, 8, 9, 12, 18, 19, 21, 23
\& Vocabulary and Theorems for Section 6 (1.6)

# DO NOW: Division of Segments and Angles 

Midpoints and Bisectors of Segments:

- A point (segment, ray or line) that divides a segment into segments $\qquad$ the segments.
- The bisection point is called the $\qquad$ of the segment.

Is B a midpoint?


How many midpoints does LZ have?
How many bisectors does LZ have?


## Angle Bisectors

An angle, like a segment, can be bisected.
A ray that divides an angle into two congruent angles $\qquad$ the angle.

The dividing ray is called the $\qquad$ of the angle.

## Trisection Points and Trisecting a Segment

Draw a picture

- Two points (or segments, rays or lines) that divide a segment into $\qquad$ segments $\qquad$ the segment.

The two points at which the segment is divided are called the
$\qquad$ .

Draw a picture

## Angle Trisectors

- Two rays that divide an angle into
$\qquad$ angles the angle.

$\qquad$


The two dividing rays are called $\qquad$ of the angle.

## 3 Clarifying Examples

Example 1)
If $\overline{X Y}$ bisects $\overline{A C}$ at B , what conclusions can we draw?

Conclusions


Example 2)
If $D$ is the midpoint of $\overline{F E}$, what conclusions can we draw?

Conclusions


Example 3)
If $\overline{O K} \cong \overline{K P}$, what conclusions can we draw?
Conclusions


## Tetbook Problems p. 32-35 <br> (Problems increase in difficulty the higher the number)

(2) Name the congruent angles:
a. $\overrightarrow{R O}$ bisects $<N R P$

(7) Given: $\mathrm{m}<\mathrm{FGJ}=3 \mathrm{x}-5$

$$
\begin{aligned}
& \mathrm{m}<\mathrm{JGH}=\mathrm{x}+27 \\
& \overrightarrow{G J} \text { bisects }<F G H
\end{aligned}
$$

Find: $\mathrm{m}<\mathrm{FG} \mathrm{J}$


Tetbook Problems p. 32-35
(Problems increase in difficulty the higher the number)
(13) Given: $\overline{X Y} \cong \overline{Y Z}$

Prove: Y is the midpoint of $\overline{X Z}$


(22) Given: $\overrightarrow{O P}$ and $\overrightarrow{O R}$ trisect $<$ NOS
$\mathrm{m}<\mathrm{NOP}=3 \mathrm{x}-4 \mathrm{y}$ $\mathrm{m}<$ NOR $=\mathrm{x}-\mathrm{y}$
Find: $m<$ ROS


HW: p. 32 \#1, 2b, 3b, 5, 6, 8, 9, 12, 18, 19, 21, 23
\& Vocabulary and Theorems for Section 6 (1.6)

