Lesson 25 Assigned Problem Solutions:

List all the triangle congruence criteria here: \qquad
List the criteria that do not determine congruence here: \qquad

Examples

1. Given: $B C \perp C D, A B \perp A D, \angle 1=\angle 2$

Prove: $\triangle B C D \cong B A D$

1) $B C \perp C D, A B \perp$. to $A D$
2) $\angle C$ and $\angle D$ are right angles
3) $\angle C \cong \angle D$
4) $\angle 1 \cong \angle 2$
5) $\angle 1$ and $\angle 3$ make a linear pair $\angle 2$ and $\angle 4$ make a linear pair
6) $\angle 1$ and $\angle 3$ are supplementary $\angle 2$ and $\angle 4$ are supplementary
7) $\angle 3 \cong \angle 4$
8) $B D \cong B D$
9) $\triangle B C D \cong \triangle B A D$

def. of linear pair
supplements of congruent angles are congruent
reflexive POE
SAA
2. Given: $A D \perp B D, B D \perp B C, A B=C D$

Prove: $\triangle A B D \cong C D B$

1) $A D \perp B D, B D \perp B C$

- given

2) $\angle 1$ and $\angle 2$ are right angles

- def of perp.

3) $\angle 1 \cong \angle 2$

- all right angles are congruent

4) $\mathrm{BD} \cong B D$

- reflexive POE

5) $A B \cong C D$

- given

6) $\Delta \mathrm{ABD} \cong \triangle \mathrm{CDB}$

HL

Problem Set

Use your knowledge of triangle congruence criteria to write proofs for each of the following problems.
$\begin{array}{ll}\text { 1. Given: } & A B \perp B C, D E \perp E F, B C \| E F, A F=D C \\ & \text { Prove: } \\ & \triangle A B C \cong D E F\end{array}$
Here is what I would do for \#1:

1)	AB perp. BC, DE perp. EF	-	given
	$\mathrm{BC} / / \mathrm{EF}$	-	given
	$\mathrm{AF}=\mathrm{DC}$	-	given
2)	$\mathrm{FC}=\mathrm{FC}$	-	Reflexive POE
3)	$\mathrm{AF}+\mathrm{FC}=\mathrm{AC}$	-	segment addition
	$\mathrm{DC}+\mathrm{FC}=\mathrm{FD}$		
4) $\mathrm{AF}+\mathrm{FC}=\mathrm{DC}+\mathrm{FC}$	-	addition property of equality	
5)	$\mathrm{AC}=\mathrm{FD}$	-	transitive POE
6)	$<1=<2$	-	alt interior $<\mathrm{s}$ are congruent
7)	<3 and <4 are right $<\mathrm{s}$	-	def of perpendicular
8)	$<3=<4$	-	all right $<\mathrm{s}$ are congruent
9) triangle $\mathrm{ABC}=\mathrm{DEF}$	-	SAA	

6) $\quad<1=<2$

- alt interior <s are congruent

7) <3 and <4 are right $<s$ - def of perpendicular
8) $<3=<4 \quad$ - all right $<s$ are congruent
9) triangle $\mathrm{ABC}=\mathrm{DEF}$ - SAA
2. In the figure, $P A \perp A R$ and $P B \perp B R$ and R is equidistant from the lines $P A$ and $P B$. Prove that $P R$ bisects $\angle A P B$. Here is what I would do for \#2)
For problem \# 2 I'm not too sure what equidistant is trying to tell me -if R is equidstant from segment AP and segment BP means the distance of segment
1) PA perp. AR, PB perp. BR
2) <1 and <2 are right $<\mathrm{s}$

- given

2) <1 and <2 are right $<s$. def of perpendicular
3) $<1=<2$ all right angles are congruent
4) $\mathrm{PR}=\mathrm{PR}$ - reflexive POE
5) R is equidistant from PA and PB - given
6) $\mathrm{AR}=\mathrm{BR}$ - definition of equistant
7) triangle $\mathrm{APR}=$ triangle $\mathrm{BPR} \quad \mathrm{HL}$
8) $\angle \mathrm{APR}=\angle \mathrm{BPR} \quad-\quad$ CPCTC
9) $\angle \mathrm{APR}+\angle \mathrm{BPR}=<\mathrm{APB}$ angle addition
10) PR bisects <APB - def of bisect

3. Given: $\angle A=\angle P, \angle B=\angle R, W$ is the midpoint of $A P$

Prove: $\quad R W=B W$
Here is what I would do for \#3)

1) $\angle A=\angle P, \angle B=\angle P$
2) W is the midpoint of $A P$
3) $A W=W P$
4) triangle AWB $=$ triangle PWR
5) $\mathrm{RW}=\mathrm{BW}$

- given
- given
- def of midpoint

- SAA
- CPCTC

