DO NOW:

Consider the sequence: $3,6,12,24,48 \ldots$
a) What is the rule from one term to the next?
b) Find the next 3 terms.
\qquad
, \qquad ,
c) What is the recursive formula? (Hint: What is done to the previous term to get the next term?)
d) Look for a pattern and find the $\mathbf{1 0}^{\text {th }}$ term?

$$
\begin{array}{ll}
t_{1}= & t_{6}=\square \\
t_{2}=\square & t_{7}=\square \\
t_{3}=\square & t_{8}=\square \\
t_{4}=\square & t_{9}=\square \\
t_{5}=\square & t_{10}=\square
\end{array}
$$

e) Can you figure out an explicit formula to get you the $10^{\text {th }}$ term? (Hint- think about the $1^{\text {st }}$ term, the rule, and how can you use those values to get the $10^{\text {th }}$ term?)

$$
\mathrm{t}_{10}=
$$

Geometric Sequence:

$$
\begin{aligned}
& \begin{array}{ll}
\text { i) } 3,6,12,24,48 \ldots & \text { ii) } 27,9,3,1,1 / 3 \ldots \\
r=\ldots t_{1}=\ldots & r=\ldots t_{1}=\ldots \\
\text { Create the Explicit Formula for a } \\
\text { Geometric Sequence using } t_{1} \text { and } r .
\end{array} \\
& t_{1}=
\end{aligned}
$$

Given the recursive formula for a geometric sequence find the common ratio, the first five terms, and the explicit formula.
11) $a_{n}=a_{n-1} \cdot 2$
$a_{1}=2$
12) $a_{n}=a_{n-1} \cdot-3$
$a_{1}=-3$

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

$$
\text { 7) } a_{n}=3^{n-1}
$$

10) $a_{n}=-4 \cdot 3^{n-1}$

Comparing Arithmetic and Geometric Sequences

For each sequence, state if it is arithmetic, geometric, or neither.

1) $1,3,6,10,15, \ldots$
2) $40,43,46,49,52, \ldots$
3) $4, \frac{13}{3}, \frac{14}{3}, 5, \frac{16}{3}, \ldots$
4) $-4,12,-36,108,-324, \ldots$
5) $4,16,36,64,100, \ldots$
6) $-29,-34,-39,-44,-49, \ldots$
7) $a_{n}=-163+200 n$
8) $a_{n}=16+3 n$
9) $a_{n}=(2 n)^{2}$
10) $a_{n}=2 \cdot(-3)^{n-1}$
11) $a_{n}=a_{n-1} \cdot-5$
$a_{1}=4$
12) $a_{n}=a_{n-1}+8$
$a_{1}=-17$

Homework p. 717-718 \# 8-13, 26, 27, 28, 36, 37, 50, 52, 54

